Eocene sea temperatures for the mid-latitude southwest Pacific from Mg/Ca ratios in planktonic and benthic foraminifera

John B. Creech a,⁎, Joel A. Baker a, Christopher J. Hollis b, Hugh E.G. Morgans b, Euan G.C. Smith c

a School of Geography, Environment and Earth Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
b GNS Science, P.O. Box 30368, Lower Hutt 5040, New Zealand
c Institute of Geophysics, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand

A R T I C L E I N F O

Article history:
Received 18 May 2010
Received in revised form 23 September 2010
Accepted 23 September 2010
Available online 18 October 2010

Editor: P. DeMenocal

Keywords:
Early Eocene
Mg/Ca
paleoclimate
EECO
foraminifera
LA-ICP-MS

A B S T R A C T

We have used laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to measure elemental (Mg/Ca, Al/Ca, Mn/Ca, Zn/Ca, Sr/Ca, and Ba/Ca) ratios of 13 species of variably preserved early to middle Eocene planktonic and benthic foraminifera from New Zealand. The foraminifera were obtained from Ashley Mudstone, mid-Waipara River, South Island, which was deposited at bathyal depth (ca. 1000 m) on the northern margin of the east-facing Canterbury Basin at a paleo-latitude of ca. 55°S. LA-ICP-MS data yield trace element depth profiles through foraminifera test walls that can be used to identify and exclude zones of surficial contamination and infilling material resulting from diagentic coatings, mineralisation and detrital sediment. Screened Mg/Ca ratios from 5 species of foraminifera are used to calculate sea temperatures from late Early to early Middle Eocene (ca. 51 to 46.5 Ma), a time interval that spans the termination of the Early Eocene Climatic Optimum (EECO). During this time, sea surface temperatures (SST) varied from 30 to 24 °C, and bottom water temperatures (BWT) from 21 to 14 °C. Comparison of Mg/Ca sea temperatures with published δ18O and TEX86 temperature data from the same samples (Hollis et al., 2009) shows close correspondence, indicating that LA-ICP-MS can provide reliable Mg/Ca sea temperatures even where foraminiferal test preservation is variable. Agreement between the three proxies also implies that Mg/Ca-temperature calibrations for modern planktonic and benthic foraminifera can generally be applied to Eocene species, although some species (e.g., V. marshalli) show significant calibration differences. The Mg/Ca ratio of the Eocene ocean is constrained by our data to be 35–50% lower than the modern ocean depending on which TEX86 – temperature calibration (Kim et al., 2008; Liu et al., 2009) – is used to compare with the Mg/Ca sea temperatures. Sea temperatures derived from δ18O analysis of foraminifera from Waipara show amplified variability relative to the Mg/Ca and TEX86 proxies. This amplified variability is probably a diagenetic effect although it is possible that this Eocene δ18O record contains an ice volume component — the amplification signalling that temperature changes may have been accompanied by growth and collapse of ephemeral polar ice sheets on timescales of ca. 0.5 Myr.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Sea temperature estimates derived from magnesium/calcium (Mg/Ca) ratios, based on the thermodynamically controlled incorporation of Mg into the calcite tests of foraminifera, are widely used as a tool for reconstructing past climates (Billups and Schrag, 2003; Burgess et al., 2008; Lear et al., 2000, 2008; Mashiotta et al., 1999; Tripati and Elderfield, 2005; Tripati et al., 2003). Most previous applications of the Mg/Ca thermometer have utilized bulk analytical methods where several foraminifer tests are crushed, chemically cleaned with oxidizing (± reducing) agents, dissolved in acid and then analysed in solution. These methods require careful cleaning procedures to remove potential contaminant phases and detritus that may affect the measured test chemistry and could potentially result in erroneous paleo-sea temperatures. These methods also provide only a single temperature for each sample.

Advances in micro-analytical techniques, including laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), now enable precise in situ analysis of trace elements in foraminifer tests at a spatial resolution of a few tens of microns. As the laser spot size is small relative to the size of foraminifer tests, this type of analysis permits multiple analyses to be made on a single specimen or even within a single test chamber. This can reveal both inter- and intra-individual trace element heterogeneity related to factors such as ecological or vital effects (Eggins et al., 2003, 2004; Reichart et al., 2003; Sadekov et al., 2008, 2009). One particularly useful feature of laser ablation analysis is that it yields a trace element depth profile through the foraminifer test wall that can be used to identify and

⁎ Corresponding author.
E-mail address: john.creech@vuw.ac.nz (J.B. Creech).
exclude zones of surficial and internal contamination resulting from diagenetic coatings, mineralisation and presence of detrital sediment (Eggins et al., 2003). Thus, this method is particularly suited to the study of foraminifera from older sediments where the degree of preservation and effects of diagenesis may potentially compromise chemical and isotopic analyses of foraminifera by bulk analytical methods (e.g. Pearson et al., 2001).

In this study, we demonstrate how trace element data obtained by LA-ICP-MS can be utilized to estimate sea temperatures from Eocene foraminifera. These foraminifera were obtained from a river bank section through Ashley Mudstone at Mid-Waipara River, north Canterbury, South Island (Morgans et al., 2005). Ashley Mudstone is a calcareous mudstone that is inferred to have been deposited in upper bathyal depths at a paleo-latitude of ca. 55°S. Biostratigraphic data indicate that the sampled interval represents continuous deposition from ca. 51 to 46.5 Ma (Hollis et al., 2009). This time interval spans the termination of an interval of extreme global warmth that is referred to as the Early Eocene Climatic Optimum (EECO) and extends from ca. 53 to 50 Ma (Zachos et al., 2001). The EECO was followed by a 17 Myr cooling trend, representing the transition from greenhouse to icehouse conditions. Oxygen isotope records indicate that ocean temperatures were much higher than today during the EECO (e.g. Shackleton and Boersma, 1981; Zachos et al., 2001). Coupled benthic Mg/ Ca, δ18O studies suggest that variations in δ18O during the Early Eocene primarily reflect changes in temperature and that there was no significant continental ice (Billups and Schrag, 2003; Lear et al., 2000).

Hollis et al. (2009) presented geochemical and paleontological evidence for tropical sea surface temperatures in the Eocene at southern mid-latitudes from the same suite of 20 samples that are used in this study. However, those sea temperature estimates were primarily based on TEX86 (18 samples) and oxygen isotopes (13 samples), with Mg/Ca data presented for only 5 samples of 3 species of foraminifera. Here we present a greatly expanded set of trace element data for up to 13 species of foraminifera taken from 19 of the Eocene samples. We compare our Mg/Ca sea temperature estimates with the TEX86 and oxygen isotope data of Hollis et al. (2009). This comparison makes it possible to assess: (1) the potential of LA-ICP-MS to recover reliable trace element chemistry and sea temperatures from early Cenozoic foraminifera; (2) the validity of using Mg/Ca-temperature calibrations from modern foraminifera for extinct Eocene species; (3) the Mg/Ca ratio of Eocene seawater. Our results also provide new insights into the transition from the Eocene greenhouse world to cooler climates and tentatively suggest that substantial ephemeral continental ice sheets may have developed periodically just after the EECO.

2. Samples and existing comparative data

A Cretaceous–Cenozoic sedimentary succession outcrops along the banks and within the bed of the middle branch of the Waipara River (mid-Waipara) in north Canterbury. A 60 m section of Eocene Ashley Mudstone is exposed in the river bed a few hundred metres upstream from the lower gorge (New Zealand topographic 1:50,000 map series grid reference M34/783949 to 784947) (Column 6 in Morgans et al., 2005; see Table S1 in Supplementary information). The Ashley Mudstone ranges in age from Early to Middle Eocene (Waipawan to Pakawäan) and is unconformably overlain by the Karetu Sandstone (King et al., 1999). Early collections from this section (Jenkins, 1971) suggest that an intact Paleocene–Eocene boundary interval may lie directly downstream of the Ashley Mudstone exposure but it is currently buried under river scree. Neither the base nor top of the Ashley Mudstone is currently exposed in the section. A suite of 51 samples was collected in 2003 (Morgans et al., 2005) and subsets of these samples have been used to establish the age range of the section utilising calcareous nannofossil, foraminiferal, radiolarian and dinoflagellate cyst biostratigraphy (Hollis et al., 2009). The age model is based on age assignments for bioevents and New Zealand local stage boundaries given in Cooper (2004), which for the Paleogene is calibrated to Berggren et al. (1995). The Ashley Mudstone is inferred to have been deposited in a neritic watermass at upper bathyal depths of ca. 1000 m (Hollis et al., 2009). Palinspastic reconstructions of New Zealand during the Early Eocene place the New Zealand landmass between ca. 50° and 60° south (Hollis et al., 2009), approximately 10° further south than the present day (Fig. 1).

Foraminifera from a suite of 20 samples from the mid-Waipara section were prepared for geochemical analysis. In addition to the trace element data presented in this study, splits from the same samples have previously been analysed for oxygen and carbon isotopes (foraminifera) and TEX86 (archaeal membrane lipids) (Hollis et al., 2009). The degree of preservation of the foraminifera decreases markedly upward through the section, as documented by scanning electron microscope images (Fig. 2). A total of 13 species of foraminifera have been analysed in this study, comprising 5 planktonic species (Morozovella cratæ, M. lensiformis, Acarinina primitiva, A. collactea and Pseudohastigerina wilcoxonii) and 9 benthic species (Ephippium hampendenense, Anomalina visenda, Nuttallides carinotruempyi, Cibicides pre-parki, C. sp. A. collinsi, Vaginulinopsis marshalli, Buliminina subbotonica).

Knowledge of the ecology of Eocene foraminifera is limited. Morozovellids are generally considered to be warm-water indicators and are common in (sub)tropical areas. A near-surface mixed-layer habitat is indicated by oxygen and carbon isotopes (Berggren and Pearson, 2006; Boersma et al., 1987; Quilléveré et al., 2001). A. collactea is a cosmopolitan species, ranging into latitudes >50° in both hemispheres, while A. primitiva is essentially a temperate, high latitude species with an austral–subantarctic distribution (Berggren et al., 2006), and most acarininids are considered to be mixed-layer dwellers with carbon isotopes suggesting a photosymbiotic life habitat (Berggren et al., 2006; Quilléveré et al., 2001). P. wilcoxonii is restricted to mid- to high latitudes. Studies of Pseudohastigerina taxa suggest a shallow water habitat (Poore and Matthews, 1984). Hayward et al. (1997) consider the benthic genus Elphidium to be mostly free-living, epifaunal, sometimes adopting a clungging lifestyle, and predominantly herbivorous (pinnate diatoms) although it sometimes can be detritivorous. However, given its occurrence in mainly bthalal sediments, E. hampendenense appears to have had quite a different habitat to most other species in the genus, which are restricted to shallow coastal waters. Buliminina is considered to be an infaunal taxon, and Vaginulinopsis (elongate nodosarid) is thought to have a similar habitat. Rotaline genera such as Cibicides and Nuttallides with flattened sides or with some sculpture may have some attaching epifaunal habitat either above or at the sediment–water interface.

In the previous study of sea temperature variation in this section (Hollis et al., 2009), temperature estimates from δ18O were based on analyses of single specimens of foraminifera with the planktonic genus Morozovella used as an indicator of near-surface sea temperatures (SST) and the benthic genus Cibicides used as an indicator for sea-floor bottom water temperatures (BWT), which is thought to represent intermediate water in this upper bathyal setting (Hollis et al., 2009). Temperatures were estimated using the equation of Erez and Luz (1983) assuming an ice-free δ18Owater value of −1‰ (Zachos et al., 1994). No corrections were made for surface-water salinity or other isotopic fractionation effects.

TEX86 SST estimates (Hollis et al., 2009) were based on the relative distribution of glycerol dialkyl glycerol tetraether (GDGT) in membrane lipids from the marine picoplankton Crenarchaeota (Schouten et al., 2002, 2007); using the Kim et al. (2008) global calibration from core-top data that assumes a linear relationship between water temperature and TEX86 values. However, Liu et al. (2009) have argued that the exclusion of some core-top locations and outliers from the
linear calibration narrows its geological application, and have produced a non-linear calibration from the same core-top sample set that fits all of the available data. Bijl et al. (2009) have subsequently argued that the exclusion of some data is appropriate due to the different behaviour of Crenarchaeota in some special settings and have continued to use the Kim et al. (2008) calibration. In this study, the TEX86 data from Hollis et al. (2009) have been converted into SSTs using both of these calibrations, and the differences between them are subsequently discussed.

A new TEX86 calibration was recently published by Kim et al. (2010), which addresses the application of these calibrations to high sea surface temperatures. The authors present two calibrations that represent fits to core-top TEX86 data from two groups of sites with different temperature ranges. The authors suggest that samples from a greenhouse world ocean, such as those from this study, be calibrated using their high temperature calibration, which was found to produce good agreement with δ18O data from planktonic foraminifera. Recalculation of TEX86 temperatures using this calibration results in values that are intermediate between those calculated using the Kim et al. (2008) and Liu et al. (2009) calibrations — lower than the former but higher than the former.

3. Analytical techniques

3.1. Sample preparation

To recover foraminifera, samples of ca. 500 g of bulk sediment were dried at <40 °C, and washed over a 75 μm screen, dried again at <40 °C, and the residue weighed and split for census data and faunal slides. Selected taxa were picked from faunal slides and prepared for LA-ICP-MS trace element analysis. Prior to analysis, all foraminifera tests were cleaned to remove adhering clay and other detrital material by repeated rinsing in ultra-pure (>18.2 MΩ) water and analytical reagent (AR) grade methanol. The cleaning procedure did not include an ultrasonication step as these Eocene specimens were found to easily disintegrate, and given the small number of specimens available, the risk of sample loss outweighed the potential benefit of removing small amounts of adhered/infilling material. Individual foraminifera were mounted onto double-sided tape attached to the surface of a wafer of National Institute of Standards and Technology glass standard NIST610 (Jochum and Stoll, 2008; Pearce et al., 1997).

3.2. LA-ICP-MS trace element analysis

Foraminifera were ablated with a New Wave 193 nm laser ablation system using a 25 μm spot size and laser repetition rate of 2 or 3 Hz and laser power of ~50%. Under these conditions, a laser ablation pit is gradually ablated at a rate of ~0.2 to 0.3 μm s⁻¹, yielding a trace element depth profile through the test. Ablation was carried out in a helium atmosphere and the ablated material carried to the ICP-MS torch in a helium–argon gas mixture. An Agilent 7500CS ICP-MS was used to measure trace element abundances relative to Ca during ablation. The isotopes 24Mg, 27Al, 43Ca, 55Mn, 66Zn, 88Sr and 138Ba were repeatedly scanned during ablation with dwell times of 10 ms. Instrumental backgrounds of 60 s were determined prior to each analysis, which was typically 120 s long. Analyses of the NIST610 glass were interspersed between every 5–10 analyses of foraminifera to correct for trace element fractionation induced by the laser ablation and mass spectrometry procedures. Typical foraminifera (foram) and background (bg) rates (cps) were: 24Mg_foram = 60 000, 24Mg_bg = 300; 27Al_foram = 160 000, 27Al_bg = 5000; 43Ca_foram = 42 000, 43Ca_bg = 300; 55Mn_foram = 14 000, 55Mn_bg = 5000; 66Zn_foram = 700, 66Zn_bg = 40; 88Sr_foram = 85 000, 88Sr_bg = 20; 138Ba_foram = 8000, and 138Ba_bg = 20.

After LA-ICP-MS analysis, the foraminifera were carbon coated and imaged by scanning electron microscopy (SEM) to compare laser pits.
with their respective analyses to assess the preservation of foraminifer specimens and quality of each analysis.

3.3. Data reduction and screening

Element/Ca ratios were plotted versus ablation time, producing a depth profile of foraminifera test chemistry from its exterior through to the interior (Fig. 3). Trace element profiles were then screened for the effects of diagenesis and contamination. Most trace element profiles show an enriched zone of high Mg/Ca at the start of each analysis, followed by an interval of relatively constant and lower Mg/Ca, consistent with observations reported in previous in situ laser ablation studies of foraminifera (e.g. Eggins et al., 2003; Pena et al., 2005; Reichart et al., 2003; Sadakov et al., 2008). Ablating further into the interior of the foraminifer generally results in a return to high Mg/Ca values, indicating that the laser has penetrated the inner wall of the test and is ablating infilling clay and/or secondary minerals. Zones of high Mg/Ca are also typically marked by high Al/Ca and Mn/Ca. For the purposes of calculating Mg/Ca sea temperatures, the enriched outer and inner zones are excluded from the mean and just the interval of constant and low Mg/Ca, representing the primary foraminiferal calcite, is averaged (Fig. 3). Depth profiles were found to vary significantly between species due to varying properties (thickness, density etc.) of tests from different taxa. Benthic species generally yield better laser ablation profiles as a result of ablation of their denser, less porous, less ornamented, and flatter tests. Some species (particularly V. marshalli) consistently produced long, regular depth profiles, of which the integrated segment comprised most of the analysis (Fig. 3A).

After screening of depth profiles, summary trace element data was scrutinized, and analyses with anomalously high values in any trace element were also discarded. Unscreened data also shows a linear correlation between Mg/Ca and Al/Ca, which reflects the influence of silicate contamination (interpreted as small amounts of sediment infilling pores). Following Barker et al. (2003), the composition of the contaminant can be approximately determined by plotting Mg/Ca versus Al/Ca, from which the slope of a linear regression gives the Al/Mg ratio of the sediment. Once the contaminant composition is known, screening limits for silicate contamination can be set by calculating the Al/Ca ratio at which Mg/Ca would be biased sufficient to alter temperatures by >1 °C. The sediment composition from the mid-Waipara samples was determined from a plot of all unscreened data from all species, excluding only analyses with extreme values of Al/Ca (>50 mmol/mol). This yielded an Al/Mg ratio of 8.1 (i.e. much less Mg-rich than the sediment in Barker et al. (2003)) from which screening limits were calculated for

Fig. 2. Scanning electron microscope images illustrating the variable preservation of mid-Waipara planktonic and benthic foraminifer tests. (a–c) = M. crater; (d–f) = B. subbortonica; (g–i) = V. marshalli; (a), (d) and (g) are specimens from the upper part of the section where foraminifera are poorly preserved; (b), (e) and (h) are specimens from the lower part of the section where foraminifera are relatively well preserved; (c), (f) and (i) are images of cross-sections of test walls from relatively well preserved specimens. Diagenetic overgrowths are clearly visible in (c) and (f), showing that even the well preserved specimens have been diagenetically affected. The white scale bars on the whole specimens and wall cross-sections are 50 μm and 20 μm, respectively.
each species. The screening limit also depends on the calibration used (i.e. planktonic or benthic) and the typical Mg/Ca ratio for each species. For example, the planktonic species *M. crater* has a typical Mg/Ca value of ca. 3.6 mmol/mol. Based on the planktonic calibration, an increase of 9% (0.325 mmol/mol) Mg/Ca would increase the calculated temperature by 1 °C. Based on the equation of Barker et al. (2003) $\text{Mg/Ca}_{\text{excess}} = \frac{\text{Al/Ca}_{\text{sample}}}{\text{Al/Mg}_{\text{contaminant}}}$, the required limit for Al/Ca in this case is $0.325 \times 8.1 = 2.6$ mmol/mol. Thus, when the data are screened in this way, no analysis should overestimate temperature by more than 1 °C. For the detailed temperature–time records presented in Section 4.1, each species was screened with individual Al/Ca limits (mmol/mol) of 2.6 for *M. crater*, 2.3 for *A. primitiva*, 3.5 for *Cibicides* sp. A, 2.5 for *B. subbortonica*, and 7.2 for *V. marshalli* (see Supplementary information).

3.4. Calculating Mg/Ca paleo-sea temperatures

The Mg/Ca ratio is related to water temperature by the equation:

$$\frac{\text{Mg}}{\text{Ca}} = \left(\frac{\text{Mg}}{\text{Ca}_{\text{sw}-t}} / \frac{\text{Mg}}{\text{Ca}_{\text{sw}-0}}\right) \times B \times e^{(A \times T)}$$

Mg/Ca_{sw} is seawater Mg/Ca at time t (i.e., Eocene, subscript t) and today (subscript 0); A and B are the exponential and pre-exponential constants respectively, and T is temperature (Lear et al., 2002). The temperatures from Eocene foraminifera were calculated using a multi-species Mg/Ca-temperature calibration for modern tropical and sub-tropical planktonic foraminifera ($A = 0.09, B = 0.38$; Anand et al., 2003), and a calibration from three modern *Cibicidoides* species for benthic foraminifera ($A = 0.109, B = 0.867$; Lear et al., 2002). Based on the uncertainties in these published calibrations, the propagated error in reconstructed temperatures is ca. ±1.5 °C for both planktonic and benthic species.

Secular changes in the Mg/Ca ratio of seawater (Mg/Ca_{sw}) have occurred over timescales of millions of years, and various models and proxies have estimated Mg/Ca_{sw} through time (Billups and Schrag, 2003; Coggon et al., 2010; Dickson, 2002; Hardie, 1996; Lear et al., 2002; Lowenstein et al., 2001, 2003; Stanley and Hardie, 1998; Wilkinson and Algeo, 1989; Zimmermann, 2000). Given that Eocene seawater is likely to have had lower Mg/Ca than the present day, we calculated sea temperatures using a conservative estimate of Eocene seawater Mg/Ca of 3.35 mmol/mol, or 35% lower than the present day (Lear et al., 2002), although other estimates do predict lower values. An even lower Mg/Ca ratio for Eocene seawater has the effect of increasing calculated Mg/Ca sea temperatures, and thus we consider all our presented temperature estimates are minimum values.
4. Results

4.1. Trace element/Ca analysis of mid-Waipara foraminifera

A preliminary study of the Eocene foraminifera found at mid-Waipara involved the characterization of all the different species present to select a subset of species for use in the detailed temperature–time record. In this initial study, every specimen present in three samples (MW106, MW112, and MW118) with the widest assemblage of species was analysed. A total of 13 different species were analysed, and showed significant differences in typical trace element profiles, inter- and intra-test variability, and trace element chemistry between these Eocene taxa (see Supplementary information). On the basis of the data obtained in this preliminary investigation, 5 species characterized by the least disturbed trace element depth profiles and most consistent data (M. crater, A. primitiva, C. sp. A, B. subbortonica, and V. marshalli) were selected for analysis through the entire mid-Waipara section.

The five selected species analysed from all of the mid-Waipara samples, cover the period 50.7 to 46.5 Ma at a temporal resolution of 100 to 300 kyr (Table S1). Both the abundance of foraminifera and their degree of preservation decrease upward through the section. Planktonic species were generally found to yield poorer analyses than benthics with only ca. 30% of the total analyses for each of the planktonic species passing the screening process, compared with ca. 70% for the benthic species. The decrease in preservation towards the top of the section is often reflected by extreme trace element/Ca ratios, which has resulted in more analyses being rejected, and many of the samples from the upper part of the section yield few, if any, useable analyses from planktonic species. The preservation has had a lesser effect on the quality of the benthic trace element data, even at the top of the section where only the most diagenetically affected samples had <50% of the analyses passing screening.

Al/Ca ratios were generally observed to increase up-section in all species, accompanying the decrease in preservation. However, the screening process effectively removes any effect on calculated Mg/Ca paleo-sea temperatures as no significant correlation between Al/Ca and Mg/Ca amongst the individual analyses of any species from a particular sample is observed. Sr/Ca ratios are essentially uniform throughout the record within each species, although there appear to be subtle systematic differences in Sr/Ca ratios between different species. For example, while most of the species have average Sr/Ca = 1.1 to 1.3 mmol/mol, V. marshalli exhibits higher Sr/Ca of ca. 1.6 mmol/mol, which accompanies its systematically higher Mg/Ca as compared to the other benthic species. All species show a marked decrease (60–90%) in Mn/Ca towards the top of the section. While most trace element depth profiles (e.g., Fig. 3) show a Mn/Ca enrichment at the surface, in most analyses for the remainder of the depth profile, Mn/Ca is relatively constant and Mn/Ca ratios are also consistent between individuals within each sample.

For most samples, Mg/Ca-temperatures from the three benthic species (C. sp. A, B. subbortonica and V. marshalli) are within ca. 2.5 °C of each other, although for several samples they differ by up to ca. 4 °C. The disparity between the three benthic temperature series is greatest at the top of the section where the data is poorest. However, these temperatures are still mostly within error of one another. The 95% confidence intervals (based on intra-sample variability) in the benthic Mg/Ca temperature data are typically on the order of 0.5–1.5 °C, although these are significantly higher for samples that had very few analyses.

4.2. Changes in Mg/Ca paleo-sea temperatures through the mid-Waipara section

Smoothed records for SST and BWT were calculated from weighted means of the Mg/Ca temperatures from planktonic and benthic foraminifera taxa, respectively. Weightings are based on 95% confidence intervals (CI) for each temperature data point (i.e. intra-sample variability). Temperatures that are based on a single analysis (i.e. have no standard deviation) were given a low, but not zero, weighting. Data points that end up with artificially large confidence intervals solely from the small number of analyses, (i.e. have a similar standard deviation but a large t-distribution (TINV)) were given fixed confidence intervals of 6 °C. The smoothed records are found to describe the data set well (Fig. 4, Table 1). Most of the residual temperatures for the planktonic data include zero in their error bars, and the same is true for almost all of the benthic residual temperatures.

Planktonic foraminiferan Mg/Ca ratios range from ca. 3.6 mmol/mol at the bottom of the section to ca. 2.0 mmol/mol at the top of the section, indicating a general cooling from ca. 30 °C to 23 °C. Temperatures are relatively stable for the first half of the record yielding 27–30 °C from planktonic species and 18–21 °C from benthic species, with the exception of two samples (MW100 and MW103), which are cooler by ca. 4 °C for planktonic species and 2–3 °C for benthic species. In sample MW115 (49.0 Ma), M. crater yields a slightly cooler temperature that may represent a subtle cooling that is not observed in the benthic record. The second half of the record is dominated by a cooling trend from ca. 48.7 Ma, observed in both SST and BWT.

In general, the Mg/Ca SST and BWT records show strong agreement. An overall trend of cooling is observed in both the SST and BWT records. Temperatures during the first half of the record (ca. 51–48.7 Ma) were relatively stable, with most of the observed cooling taking place from ca. 48.7 Ma onwards. A transient cooling event is observed in SST and BWT between ca. 50.5 and 50.0 Ma, with ca. 4 °C decrease in SST, and a slightly subdued cooling of 2–3 °C in the BWT record. However, the broad cooling over the entire record is approximately equal in magnitude (ca. 5–6 °C) in both the SST and BWT records.

5. Discussion

5.1. Do the Mg/Ca temperatures reliably record past sea temperatures?

The three different temperature proxy records (Mg/Ca, TEX86, and δ18O) available from mid-Waipara all yield very warm temperatures for the Early Eocene and a general cooling trend over the length of the record (Fig. 4). The three SST proxies yield similar temperatures in the range of 25–35 °C, and the two benthic records are in the range of 15–25 °C. The proxy records show common temporal variations, but these vary in magnitude between different proxies. While there is good agreement between the Mg/Ca and TEX86 SSTs, which is discussed further in Section 5.2, the oxygen isotope records are slightly more complicated. The planktonic δ18O temperature record has roughly the same mean value as the planktonic Mg/Ca and TEX86 temperature records and shows very similar trends. However, the δ18O SST changes are significantly larger than those recorded by Mg/Ca ratios or TEX86 data (Fig. 4). The benthic δ18O record also records these amplified changes in temperatures as compared to the other proxies. The reasons for this are considered further in Section 5.3.

Figure 5 shows several of the various proxy records normalized to their standard deviations (i.e. mean subtracted and variability scaled to number of standard deviations from the mean). These normalized records give a clear picture of the temperature trends over time, and illustrate that the temperature variability is very consistent between the proxy records. Of the two planktonic Mg/Ca records, M. crater shows a much better agreement with the other records than the smoothed SST record (M. crater + A. primitiva), and the M. crater Mg/Ca record is the preferred Mg/Ca SST record obtained in this study. The correlation between these records gives clear evidence that the three independent proxies are all recording a common (temperature) signal.
As a means of quantifying how well the different proxies agree, the smoothed benthic Mg/Ca-temperature record was treated as a “model” temperature. Residual (proxy-model) temperatures were calculated for each of the other proxies after correcting for mean offsets. For example, if the TEX86 temperature record (using the Liu et al. calibration) had the same mean as the smoothed benthic record, the average difference (=mean residual) between the two records would be just 0.8 °C. Using the Kim et al. (2008) calibration the mean residual would be 1.3 °C. Thus, TEX86 temperatures from both calibrations show a strong agreement with Mg/Ca temperatures.

The strong agreement between the Mg/Ca paleo-sea temperatures and two independent temperature proxies indicates that the laser ablation ICP-MS technique is effective in extracting reliable and meaningful temperatures even from what are, in some cases, relatively poorly preserved specimens. The similarity in the magnitude of reconstructed SST and BWT proxy records also suggest that the Mg/Ca-temperature calibrations from modern species appear to be applicable to Eocene species of foraminifera.

5.2. Implications for the seawater Mg/Ca ratio in the Eocene ocean

The Mg/Ca value for Eocene seawater used in this study to calculate sea temperatures (3.35 mmol/mol) is a conservative value, and while Lear et al. (2002) argue that it is unlikely that Mg/Ca would have been less than 3.35 mmol/mol, published estimates from other models and proxies extend to values as low as 1.5–2.0 mmol/mol (Dickson, 2002; Hardie, 1996; Lowenstein et al., 2001; Stanley and Hardie, 1998), which would raise Mg/Ca sea temperatures by up to 10 °C as compared to the values shown here (Tables 1, S1 and S2; Fig. 4A).

TEX86 SSTs are independent of the seawater Mg/Ca ratio, and these can thus be used to constrain the Mg/Ca values of seawater during the Eocene, including any potential significant changes over time (assuming that the Mg/Ca-temperature calibration is accurate for these Eocene foraminifera). However, comparison between Mg/Ca and TEX86 SSTs is complicated by disagreement over temperature calibrations for TEX86. While there is good agreement between Mg/Ca and TEX86 SSTs in terms of the timing and magnitude of temperature variations, the absolute TEX86 SST values depend on which calibration is used (Fig. 4B).

An Eocene Mg/Ca of 3.35 mmol/mol (Lear et al., 2003), fixed throughout the duration of the record, results in a very close match...
between planktonic Mg/Ca and TEX86 SSTs using the non-linear calibration of Liu et al. (2009). If the Liu et al. (2009) calibration is correct, this suggests that this Mg/Ca TEX86 is close to the true value. However, using the calibration of Kim et al. (2008), TEX86 temperature estimates are higher by up to 4.5 °C and show a greater cooling over the time interval, potentially implying our assumed Mg/Ca TEX86 is too conservative (i.e., high) and that Mg/Ca TEX86 has changed over the duration of the record. By adjusting the planktonic Mg/Ca SST data to match the TEX86 record, it is possible to estimate the required Mg/Ca TEX86 and its rate of change. Doing so requires Mg/Ca TEX86 to be 2.24 mmol/mol at the bottom of the record increasing to 3.04 mmol/mol by the top of the record (assuming the change in Mg/Ca TEX86 to be linear), and results in a good fit between SSTs derived from Mg/Ca and TEX86 calculated with the Kim et al. (2008) calibration. Applying the same Mg/Ca TEX86 values to the benthic Mg/Ca data also increases BWT estimates, and improves the agreement between the benthic Mg/Ca and δ18O records. However, the implied rate of change in Mg/Ca TEX86 of 0.19 mmol/mol per Myr is significantly steeper than modelled estimates, which predict a maximum rate of ca. 0.08 mmol/mol per Myr (Stanley and Hardie, 1998; Wilkinson and Algeo, 1989).

A comparison of Mg/Ca and TEX86 SSTs indicates that the Mg/Ca ratio of Eocene seawater is unlikely to have been lower than 2 mmol/mol because lower estimates of seawater Mg/Ca increase reconstructed Mg/Ca paleo-sea temperatures beyond the range suggested by two independent temperature proxies. Recently, Coggon et al. (2010) published a record of Mesozoic and Cenozoic seawater Mg/Ca and Sr/Ca ratios extending back to ca. 170 Ma based on trace element concentrations from mid-ocean ridge flank calcium carbonate veins. The estimates from Coggon et al. (2010) of Paleogene seawater Mg/Ca range from 1.2 to 2.5 mmol/mol. The sensitivity of the Mg/Ca paleothermometer to changes in the Mg/Ca ratio of seawater is shown in Figure 6. Based on our Mg/Ca data, seawater Mg/Ca ratios of <1.5 mmol/mol have the effect of increasing reconstructed Mg/Ca temperatures by 7.5–11.5 °C (Fig. 6), resulting in temperatures that seem implausibly high (36–41 °C), especially considering temperatures from TEX86. Additionally, seawater Sr/Ca ratios from Coggon et al. (2010) are estimated at Sr/Ca = 2.8 ± 1 mmol/mol (i.e. 3 times lower than the present day). By inverting the Sr/Ca partition coefficient between seawater and foraminiferal calcite from Lear et al. (2003) (D Sr = 0.165), the Eocene seawater Sr/Ca of Coggon et al. (2010) should be reflected by foraminiferal Sr/Ca ratios of 0.3–0.6 mmol/mol. Foraminiferal Sr/Ca ratios measured in this study are generally in the range of 1.0–1.4 mmol/mol, which is consistent with observations in previous trace element studies of Eocene foraminifera (Lear et al., 2003; Tripathi et al., 2003), and thus the results of this study are inconsistent with the Eocene seawater Sr/Ca and Mg/Ca reconstructions of Coggon et al. (2010).

5.3. Comparison with oxygen isotope data

The oxygen isotope temperature record from the Ashley Mudstone is observed to vary sympathetically with temperatures derived from Mg/Ca and TEX86 throughout the studied interval. However, the δ18O-temperature record exhibits larger amplitude fluctuations than the other temperature proxies (Fig. 4). These fluctuations are observed in both the planktonic and benthic δ18O records, and it is therefore unlikely that local evaporation and salinity effects are responsible for the amplified temperature changes. An explanation for this increase in amplitude requires a mechanism that can amplify both positive and negative δ18O excursions while preserving the primary trend in temperature.

A diagenetic explanation requires that post-depositional diagenetic processes were acting to different degrees over the record, i.e. that foraminifera deposited during warm intervals were better preserved (less diagenetically altered) than those deposited during cooler intervals. This could occur as a result of the deposition of more clay-rich sediment during warmer periods, which would lead to better preservation of foraminifera, while foraminifera deposited in cooler periods would be more susceptible to diagenesis. As diagenetic effects generally have the effect of lowering δ18O temperatures, this would amplify the cooling signal.

Table 1

<table>
<thead>
<tr>
<th>Sample number</th>
<th>Age (Ma)</th>
<th>Mg/Ca temperatures</th>
<th>TEX86 SST</th>
<th>δ18O (ice-free)</th>
<th>δ18O (with ice)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV143</td>
<td>46.5</td>
<td>M. crater 25.6</td>
<td>13.5</td>
<td>29.8</td>
<td>27.8</td>
</tr>
<tr>
<td>MV142</td>
<td>46.6</td>
<td>A. primitiva 25.6</td>
<td>13.5</td>
<td>29.8</td>
<td>27.8</td>
</tr>
<tr>
<td>MV139</td>
<td>46.8</td>
<td>Smoothed SST 25.6</td>
<td>13.5</td>
<td>29.8</td>
<td>27.8</td>
</tr>
<tr>
<td>MV136</td>
<td>47.1</td>
<td>Subbotrina 25.6</td>
<td>13.5</td>
<td>29.8</td>
<td>27.8</td>
</tr>
<tr>
<td>MV135</td>
<td>47.2</td>
<td>marshall 25.6</td>
<td>13.5</td>
<td>29.8</td>
<td>27.8</td>
</tr>
</tbody>
</table>

Note: As the temperatures from M. crater show a much better agreement with the other records than the smoothed planktonic record (M. crater + A. primitiva), and the planktonic δ18O is also based on Morozovella, the M. crater Mg/Ca record is the preferred Mg/Ca SST record.
Another mechanism that could amplify the $\delta^{18}O$-temperature signal without overprinting it and maintain synchronous variations between the three temperature proxies would be if $\delta^{18}O$ of seawater varied during this time interval (i.e. in response to the waxing and waning of continental ice sheets). In oxygen isotope temperature reconstructions, the Early Eocene Earth is often considered to have been free of significant continental ice, and temperatures are calculated assuming an “ice-free world” seawater $\delta^{18}O$ value. However, if small ephemeral ice sheets were forming and collapsing in polar regions during this time, a signal should be preserved in the $\delta^{18}O$ record. Given increasing evidence for polar ice sheets in the Eocene (e.g. Miller et al., 2005a; Peters et al., 2010; Tripati et al., 2005), it is possible that some of the high amplitude variation in $\delta^{18}O$ observed in the mid-Waipara section reflects changes in seawater $\delta^{18}O$ as a consequence of waxing and waning Eocene ice sheets. Using an independent record of temperature (such as Mg/Ca), the temperature component can be subtracted from the $\delta^{18}O$ record, yielding the $\delta^{18}O$ of seawater (e.g. Lear et al., 2000; Supplementary information). The $\delta^{18}O_{sw}$ calculated in this way is shown in Figure 4D and the effect on the $\delta^{18}O$ temperature record can be seen in Figure 4C. Allowing the $\delta^{18}O_{sw}$ to change in this way improves the match between $\delta^{18}O$ and the other proxies.

Conversion of these changes in $\delta^{18}O_{sw}$ to an approximate ice volume is difficult as it depends on the isotopic composition of ice sheets that would have existed in the Eocene, and the calibration of oxygen isotopes to ice volume. Sea level change estimates based on back stripping have shown pre-Oligocene changes in sea level on the order of several tens of metres (e.g. Browning et al., 2008; Haq et al., 1987; Kominz et al., 1998, 2008; Miller et al., 2003, 2005b; Müller et al., 2008; Pekar et al., 2005), which have been interpreted as too large and rapid to result from any other process than glacioeustacy (Miller et al., 2005a). At the temporal resolution and length of our record it is not possible to convincingly match the reconstructed Eocene $\delta^{18}O_{sw}$ with these sea level records (as per Billups and Schrag, 2002). However, the observed fluctuations in sea level do allow for the possibility of ice sheets during this period.

The presence of significant ice sheets in the earlier Eocene remains the subject of ongoing debate. Our record shows the possibility of some ice volume in influence on the $\delta^{18}O$ of carbonates. However, it is more probable that the observed amplification of $\delta^{18}O$ temperatures arises from diagenetic effects. Further high-resolution multiproxy studies of early Paleogene records, including in situ analysis of different proxies in individual microfossils, may help to resolve this debate.

5.4. Cenozoic changes in the redox state of the ocean revealed through foraminiferal Mn/Ca ratios?

The manganese content of foraminifera is generally thought to reflect secondary diagenetic processes occurring on the sea-floor, and the precipitation of Mn carbonate and oxyhydroxide phases at the sediment–water interface (Boyle, 1983; Lea et al., 1999; Pingitore
et al., 1988) or in the sediment column (Wei et al., 2009). These phases are important in redox reactions in suboxic environments (Pingitore et al., 1988), and thus Mn/Ca ratios are significantly higher in reducing sediments, where remobilised Mn and Fe are precipitated as oxides or oxyhydroxides (Boyle, 1983). The deposition of authigenic Fe–Mn oxyhydroxide phases in the ocean is largely controlled by redox conditions, which in turn depend on the amount of organic carbon deposition.

In mid-Waipara samples, mean benthic and planktonic foraminiferal Mn/Ca values show a decrease of 60–90% (e.g. Mn/Ca = ca. 0.5–0.08 mmol/mol) over the period 51–46 Ma. The interpretation of this is not entirely straightforward. The change in Mn/Ca accompanies a change in foraminifer preservation up-section. However, preservation is observed to decrease up-section. If the preservation also reflects the level to which those foraminifera were prone to diagenesis (which is inferred to be the case from laser ablation data), then logically one might expect the opposite trend in Mn/Ca (i.e. an increase up-section). While this observation does not preclude Mn-rich coatings as the source of Mn/Ca ratios, an alternative hypothesis could be that Mn/Ca is a primary feature, where Mn$^{2+}$ has been incorporated into the calcite lattice during the precipitation of the foraminifera test. While Mn is present throughout laser ablation depth profiles (Fig. 3), which would be consistent with Mn being a primary feature, the same is also true of Al/Ca, which is inferred to be present from sediment infilling pore spaces. Thus, it is not possible to say with absolute confidence whether Mn/Ca ratios here reflect the presence of Mn-rich coatings occupying pore spaces, or whether it is a primary signal and thus might record the chemistry of the water column in which these foraminifera were living.

If Mn-rich coatings are responsible for Mn/Ca compositions, we can place some constraints on their chemistry. A weak correlation is observed between Mn/Ca and Mg/Ca (Table S3). However, linear regressions through Mg/Ca versus Mn/Ca data from the different species all have very low slopes, and do not converge towards a common end member. This means that if a mixed Ca–Mn–Mg carbonate phase (e.g. Boyle, 1983; Pena et al., 2005; Weldeab et al., 2006) was the contributor of Mn, they do not appear to have caused any significant bias to Mg/Ca temperatures. If, rather, manganese oxyhydroxide coatings were the source of Mn, the weak correlation observed between Mg/Ca and Mn/Ca may be merely a coincidence, whereby a cooling of sea temperatures directly caused a decrease in foraminifera Mg/Ca ratios, and indirectly caused a reduction in Mn/Ca ratios via an accompanying change in ocean redox conditions. Regarding the implications for the redox conditions of the local basin, a decrease in the precipitation of Mn-rich contaminant phases would be expected to indicate a shift to a more oxidizing environment, i.e. a decrease in the burial of organic matter. However, this is inconsistent with a shift in carbon isotopes in planktonic foraminifera towards more positive values (Hollis et al., 2009), which indicates an increase in the export of marine organic matter from the surface ocean over the same period. An alternative explanation may come from a study of thallium (Tl) isotopes in ferromanganese crusts for the last ca. 74 Ma (Nielsen et al., 2009), which has shown that the rate of precipitation of authigenic Fe–Mn oxyhydroxides was several times higher in the Paleocene than for the remainder of the Cenozoic, and that most of the change between the two regimes occurred over the period 55–45 Ma (i.e. the same time period covered by the mid-Waipara record). Mn/Ca data from mid-Waipara and another LA-ICP-MS data set from modern foraminifera specimens (Marr, 2009) are shown overlain on the 207Pb/206Pb data of Nielsen et al. (2009) (Fig. 7). Nielsen et al. attribute the reduced sequestration of Tl by Fe–Mn oxyhydroxides to greatly increased biological utilization of Fe and Mn and increased marine organic carbon burial since the Paleocene.

Thus, the decrease in the Mn/Ca content of foraminifera over the mid-Waipara record may reflect reduction in the precipitation of Mn$^{2+}$. However, if Mn$^{2+}$ fluxes into the water column are the source of Mn, the same is also true of Al$^{3+}$. Thus, the decrease in the Mn/Ca content of foraminifera over the mid-Waipara record may reflect reduction in the precipitation of Mn$^{2+}$. However, if Mn$^{2+}$ fluxes into the water column are the source of Mn, the same is also true of Al$^{3+}$. Thus, the decrease in the Mn/Ca content of foraminifera over the mid-Waipara record may reflect reduction in the precipitation of Mn$^{2+}$. However, if Mn$^{2+}$ fluxes into the water column are the source of Mn, the same is also true of Al$^{3+}$.
manganese carbonate and oxyhydroxide coatings caused by the reduced availability of Fe—Mn in seawater, brought about by increased ocean productivity, which is consistent with the observed cooling. This is also consistent with the increased organic matter burial indicated by carbon isotopes (Hollis et al., 2009). Such an argument may satisfy either possibility for the source of Mn—a reduction in the availability of Mn in seawater would limit the availability for both precipitation from the water column, or for the formation of Mn-oxyhydroxide coatings. This interpretation is tenuous, however, given that the substitution of Mn into foraminiferal calcite is not well understood, and additionally the residence time of Mn in the ocean is short and thus changes in Mn/Ca may not reflect global processes. However given the consistency between modern foraminiferal Mn/Ca data (Marr, 2009), Eocene foraminiferal Mn/ Ca data from mid-Waipara (this study), and the thallium isotope data of Nielsen et al. (2009) for the same period, there appears to be grounds for a common interpretation.

5.5. Implications for global climate

Three independent geochemical proxies yield tropical sea temperatures for New Zealand’s Canterbury Basin during the Early Eocene with SSTs of 26–30 °C and BWTs of 16–20 °C in the bathyal setting at mid-Waipara. These temperatures are similar to other published SST estimates from lower latitude deep-sea cores for the Early to Middle Eocene (Sexton et al., 2006; Tripati et al., 2003) and from the Paleocene–Eocene thermal maximum (Zachos et al., 2005). Some significant climate events are common to all of these proxy records, which are highlighted by the normalized records in Figure 5. A transient event is observed in SST and BWT in all proxy records between ca. 50.5 and 50.0 Ma, with a cooling of ca. 4 °C in sea surface temperatures. Given the amplified oxygen isotope signal, the cooling in BWT was probably closer to the 2–3 °C indicated by the Mg/Ca BWT record. This cooling took place over ca. 0.6 Myr, reaching a local minimum at around 50.2 Ma. While this transient cooling of ca. 4 °C at mid-Waipara may not reflect a global cooling of that magnitude, the fact that it affected both sea surface and bottom water temperatures means that it is unlikely to be a localized phenomenon, and this cooling could represent a global climate event.

A cooling trend is observed from ca. 48.7 Ma onwards in reconstructed temperatures from all three of the temperature proxies. We interpret this final cooling event as the termination of the EECO for the southern mid-latitudes, and the beginning of the greenhouse to icehouse transition. By 46.5 Ma, SSTs drop to below ca. 24 °C and BWTs to below 15 °C.

The timing of the termination of the EECO at mid-Waipara (ca. 48.7 Ma) is consistent with an 800 kyr interval at ca. 48.5 Ma where the freshwater Azolla fern is thought to have grown in large quantities in freshened surface waters of the geographically restricted Eocene Arctic Ocean (Brinkhuis et al., 2006). Thus, the temperature records presented here support the hypothesis that the rapid growth of the Azolla fern may have drawn down significant amounts of atmospheric CO2, triggering the transition to the icehouse world (Brinkhuis et al., 2006; Speelman et al., 2009).

6. Conclusions

A LA-ICP-MS study of the trace element chemistry of Eocene (51–46 Ma) planktonic and benthic foraminifera from mid-Waipara, southern New Zealand has shown that:

(1) This technique can extract reliable Mg/Ca paleo-sea temperature data from Eocene foraminifera, even from moderately poorly preserved specimens, as demonstrated by agreement with sea surface and bottom water temperature data from two independent proxies (TEX86 and δ18O).

(2) The agreement between proxies also indicates that the Mg/Ca temperature calibrations from modern species appear to be applicable to Eocene foraminifera.

(3) During the EECO, sea surface temperatures at mid-Waipara (paleo-latitude ca. 55°S) were 28–30 °C, and bottom water temperatures were 18–20 °C. Temperatures were generally consistent for the period ca. 51–48.7 Ma with the exception of a 0.5 Myr transient cooling of 3–4 °C between ca. 50.5 and 50.0 Ma, and then sea temperatures steadily declined from ca. 48.7 Ma until the end of the record at 46.5 Ma. A net cooling of ca. 6 °C is observed over the entire mid-Waipara record.

(4) Reconstructed Mg/Ca paleo-sea temperatures show excellent agreement with TEX86 temperatures, which provides constraints on estimates of the Mg/Ca of Eocene seawater. The value of seawater Mg/Ca depends on the TEX86 temperature calibration used, but is in the range of 2.24–3.35 mmol/mol.

(5) An amplified temperature signal is observed in δ18O relative to TEX86 and Mg/Ca in this record. While the oxygen isotope signal has almost certainly been disturbed to some extent by diagenesis, the δ18Osw record provides some evidence for the growth and collapse of ephemeral ice sheets on Antarctica during the Early Eocene greenhouse.

(6) The termination of the EECO and the beginning of the transition from greenhouse to icehouse conditions occurred at ca. 48.7 Ma, approximately concurrent with the “Azolla interval” in the Arctic Ocean, supporting the hypothesis that this event drew down significant amounts of atmospheric CO2 and triggered the cooling that followed.

Acknowledgements

The authors would like to thank J. P. Marr for providing comparative trace element data, and M. Huber and R. D. Pancost for productive discussions in the preparation of this manuscript. We thank T. R. Naish and S. G. Nielsen for helpful comments on the manuscript. We also wish to thank three anonymous reviewers for their detailed and constructive comments.

Appendix A. Supplementary data

Supplementary data to this article can be found online at doi:10.1016/j.epsl.2010.09.039.

References

